Abstract

Let $A\subset B$ be an extension of commutative reduced rings and $M\subset N$ an extension of positive commutative cancellative torsion-free monoids. We prove that $A$ is subintegrally closed in $B$ and $M$ is subintegrally closed in $N$ if and only if the group of invertible $A$-submodules of $B$ is isomorphic to the group of invertible $A[M]$-submodules of $B[N]$ Theorem~\ref {6t2} (b), (d). In the case $M=N$, we prove the same without the assumption that the ring extension is reduced Theorem~\ref {6t2} (c), (d).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.