Abstract

In general relativity, an IDEAL (intrinsic, deductive, explicit, algorithmic) characterization of a reference spacetime metric g0 consists of a set of tensorial equations T[g] = 0, constructed covariantly out of the metric g, its Riemann curvature and their derivatives, that are satisfied if and only if g is locally isometric to the reference spacetime metric g0. We give the first IDEAL characterization of generalized Schwarzschild–Tangherlini spacetimes, which consist of -vacuum extensions of higher dimensional spherically symmetric black holes, as well as their versions where spheres are replaced by flat or hyperbolic spaces. The standard Schwarzschild black hole has been previously characterized in the work of Ferrando and Sáez, but using methods highly specific to 4 dimensions. Specialized to 4 dimensions, our result provides an independent, alternative characterization. We also give a proof of a version of Birkhoff’s theorem that is applicable also on neighborhoods of horizon and horizon bifurcation points, which is necessary for our arguments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.