Abstract

Abstractn‐C4H10 and iso‐C4H10 are both important petrochemical raw materials. Considering the coexistence of the isomers in the production process, it is necessary to achieve their efficient separation through an economical way. However, to obtain high‐purity n‐C4H10 and iso‐C4H10 in one‐step separation process, developing iso‐C4H10‐exclusion adsorbents with high n‐C4H10 adsorption capacity is crucial. Herein, we report a cage‐like MOF (SIFSIX‐Cu‐TPA) with small windows and large cavities which can selectively allow smaller n‐C4H10 enter the pore and accommodate a large amount of n‐C4H10 simultaneously. Adsorption isotherms reveal that SIFSIX‐Cu‐TPA not only completely excludes iso‐C4H10 in a wide temperature range, but also exhibits a very high n‐C4H10 adsorption capacity of 94.2 cm3 g−1 at 100 kPa and 298 K, which is the highest value among iso‐C4H10‐exclusion‐type adsorbents. Breakthrough experiments show that SIFSIX‐Cu‐TPA has excellent n/iso‐C4H10 separation performance and can achieve a record‐high productivity of iso‐C4H10 (3.2 mol kg−1) with high purity (>99.95 %) as well as 3.0 mol kg−1 of n‐C4H10 (>99 %) in one separation circle. More importantly, SIFSIX‐Cu‐TPA can realize the efficient separation of butanes at different flow rates, temperatures, as well as under high humid condition, which indicates that SIFSIX‐Cu‐TPA can be deemed as an ideal platform for industrial butane isomers separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.