Abstract
Emotion recognition using Electroencephalography (EEG) is a convenient and reliable technique. EEG based emotion detection study can find its application in various fields such as defense, aerospace, medical, and many more. This analysis helps to understand the emotional state of mind. There are two approaches to study EEG analysis known as subject dependent and independent. In this paper, Modified Differential Entropy (MD-DE) feature extractor is proposed to detect nonlinearity and non-Gaussianity of the EEG signal. The paper adopts both approaches by conducting an EEG analysis on own generated database named as ‘IDEA- Intellect Database for Emotion Analysis’ on 14 subjects. In this work, bidirectional long short-term memory (BiLSTM) network and multilayer perceptron (MLP) network is used to classify emotional state of mind of the subjects. On the ‘IDEA’ database, subject dependent average accuracy achieved is in the order of 98.5% and for subject independent, 88.57%. To reaffirm the improvement in accuracy level, a new approach of Modified Differential Entropy and BiLSTM network is applied on the openly available SEED and DEAP database as well. This experiment established that the average accuracy of emotion detection using MD-DE and BiLSTM network is better than the established methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of King Saud University - Computer and Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.