Abstract

The IDA-PBC control of plasma dynamics in a tokamak is investigated. It is based on a model made of the two coupled PDEs of resistive diffusion for the magnetic poloidal flux and of radial thermal diffusion. The used Thermal-Magneto-Hydro-Dynamics (TMHD) couplings are the Lorentz forces (with non-uniform resistivity) and the bootstrap current. The control model is obtained with the coupling of the two finite dimensional approximations obtained from the two diffusion models, using two geometric reduction schemes. A feedforward control is used to ensure the compatibility with the actuator physical ability. Then, an IDA-PBC (Interconnection and Damping Assignment - Passivity Based Control) controller is proposed for the coupled model to improve the system stabilization and convergence speed. The obtained numerical results are validated against the simulation data obtained from the RAPTOR (RApid Plasma Transport simulatOR) code for the TCV (Tokamak of Configuration Variable at CRPP, EPFL, Lausanne, Switzerland) tokamak real-time control system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.