Abstract

In this study, the authors investigated high-frequency oscillation (HFO) networks during seizures in order to determine how HFOs spread from the focal cerebral cortex and become synchronized across various areas of the brain. All data were obtained from stereoelectroencephalography (SEEG) signals in patients with drug-resistant temporal lobe epilepsy (TLE). The authors calculated intercontact cross-coefficients between all pairs of contacts to construct HFO networks in 20 seizures that occurred in 5 patients. They then calculated HFO network topology metrics (i.e., network density and component size) after normalizing seizure duration data by dividing each seizure into 10 intervals of equal length (labeled I1-I10). From the perspective of the dynamic topologies of cortical and subcortical HFO networks, the authors observed a significant increase in network density during intervals I5-I10. A significant increase was also observed in overall energy during intervals I3-I8. The results of subnetwork analysis revealed that the number of components continuously decreased following the onset of seizures, and those results were statistically significant during intervals I3-I10. Furthermore, the majority of nodes were connected to a single dominant component during the propagation of seizures, and the percentage of nodes within the largest component grew significantly until seizure termination. The consistent topological changes that the authors observed suggest that TLE is affected by common epileptogenic patterns. Indeed, the findings help to elucidate the epileptogenic network that characterizes TLE, which may be of interest to researchers and physicians working to improve treatment modalities for epilepsy, including resection, cortical stimulation, and neuromodulation treatments that are responsive to network topologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.