Abstract
The authors investigated alterations in functional connectivity (FC) and EEG power during ictal onset patterns of low-voltage fast activity (LVFA) in drug-resistant focal epilepsy. They hypothesized that such changes would be useful to classify epilepsy surgical outcomes. In a cohort of 79 patients with drug-resistant focal epilepsy who underwent stereoelectroencephalography (SEEG) evaluation as well as resective surgery, FC changes during the peri-LVFA period were measured using nonlinear regression (h2) and power spectral properties within/between three regions: the seizure onset zone (SOZ), early propagation zone (PZ), and noninvolved zone (NIZ). Desynchronization and power desynchronization h2 indices were calculated to assess the degree of EEG desynchronization during LVFA. Multivariate logistic regression was employed to control for confounding factors. Finally, receiver operating characteristic curves were generated to evaluate the performance of desynchronization indices in predicting surgical outcome. Fifty-three patients showed ictal LVFA and distinct zones of the SOZ, PZ, and NIZ. Among them, 39 patients (73.6%) achieved seizure freedom by the final follow-up. EEG desynchronization, measured by h2 analysis, was found in the seizure-free group during LVFA: FC decreased within the SOZ and between regions compared with the pre-LVFA and post-LVFA periods. In contrast, the non-seizure-free group showed no prominent EEG desynchronization. The h2 desynchronization index, but not the power desynchronization index, enabled classification of seizure-free versus non-seizure-free patients after resective surgery. EEG desynchronization during the peri-LVFA period, measured by within-zone and between-zone h2 analysis, may be helpful for identifying patients with favorable postsurgical outcomes and also may potentially improve epileptogenic zone identification in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.