Abstract

To describe the requirement of DNA topoisomerase II (topo II) during transition from the quiescent state (G0 phase) to the cell division cycle in mammalian cells, we examined the influence of ICRF-193, a catalytic inhibitor of topo II, on re-entry into the cell division cycle of quiescent cells in response to appropriate growth stimuli. The re-entry into the S phase of cultured cell lines arrested at the quiescent (G0) phase by serum-starvation was sensitive to 10 microm ICRF-193. DNA syntheses induced by lipopolysaccharide in murine spleen cells or by release from contact-inhibition were also inhibited by ICRF-193. The cell lines with a high-level of resistance toward ICRF-193 due to a point mutation in the topo IIalpha gene entered into the S phase from quiescence in the presence of ICRF-193. The drug did not inhibit entry into the S phase in cultured cells released from arrest at the metaphase or G1 phase. There is an ICRF-193-sensitive step during re-entry of quiescent mammalian cells into the cell division cycle upon growth stimulation and the drug targets topo IIalpha during the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.