Abstract

Signaling through the inducible costimulator ICOS is required for the homeostasis and function of various immune cell populations, with an outstanding role in the generation and maintenance of germinal centers. Very recently, it has been suggested that the clinical phenotype of ICOS-deficient patients is much broader than initially anticipated and the innate immune response might be also affected. However, the role of the ICOS/ICOS-Ligand axis in the homeostasis and development of innate NK cells is not known, and reports on its participation in NK cell activation are scarce. NK cells may express low levels of ICOS that are markedly enhanced upon activation. We show here that ICOS-deficient (ICOS-KO) mice present low NK cell numbers and defects in the homeostasis of these cells, with delayed maturation and altered expression of the developmental NK cell markers CD122, NK1.1, CD11b or CD27. Our experiments in mixed bone marrow chimera mice indicate that, both, cell-intrinsic defects of ICOS-KO NK and deficiencies in the milieu of these mice contribute to the altered phenotype. ICOS-deficient NK cells show impaired production of IFN-γ and cytotoxicity, and a final outcome of defects in NK cell-mediated effector function during the response to poly(I:C) or vaccinia virus infection in vivo. Interestingly, we show that murine innate cells like IL-2-cultured NK and bone marrow-derived dendritic cells can simultaneously express ICOS and ICOS-Ligand; both molecules are functional in NK intracellular signaling, enhancing early phosphorylation of Akt and Erk, or IFN-γ secretion in IL-2-activated NK cells. Our study shows the functional importance of the ICOS/ICOS-L pair in NK cell homeostasis, differentiation and activity and suggests novel therapeutic targets for NK manipulation.

Highlights

  • No significant differences in the total T lymphocytes were detected in ICOS-KO mice, they had fewer CD3+NK1.1+ NKT cells (Fig 1C) and some T cell subpopulations, consistent with previous observations in mice lacking ICOS/ICOS-L interactions [11, 20, 21]

  • The reduced number of natural killer (NK) cells in the spleen of ICOS-KO mice could be due to their impaired development in the bone marrow (BM) or to altered homeostasis in the periphery

  • Fewer NK cells were found in the BM of ICOS-KO mice (Fig 1D), suggesting defective NK cell development in the ICOS-KO mice and prompting us to analyze ICOS-KO NK cells in both the BM and the periphery

Read more

Summary

Introduction

The inducible costimulator ICOS is up-regulated following T and natural killer (NK) cell activation whereas it is constitutively expressed in NKT cells, ILC2 cells, and in a small. ICOS and ICOS-Ligand in NK cells la Ricerca sul Cancro, AIRC, Milan (IG20714) and the Fondazione Amici di Jean, Torino, Italy The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.