Abstract

Three low Reynolds number (LRN) k-ε models, one LRN k-ω model and the k-ω SST model are tested with OpenFOAM for the computation of high-Schmidt- number mass transfer in the flow-accelerated corrosion (FAC), especially for the separated and reattaching flow. Three types of flow are selected for the test of models: 1) the fully developed pipe flow, 2) the axisymmetric flow with an abrupt expansion, 3) the flow through an orifice. The model developed with the aid of direct numerical simulation (DNS) data, the Hwang-Lin model, shows a good performance in the fully developed pipe flow, but its prediction in the latter two flows is far from reliable. The LRN k-ω model and the k-ω SST model predict a low mass transfer rate for all three types of flow. The Lam- Bremhorst model shows abnormal behavior at the reattaching point. Synthetically evaluating all the models in all the computed case, the Abe-Kondoh-Nagano model is the best one; however, the prediction is still not satisfactory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.