Abstract

The High Temperature Engineering Test Reactor (HTTR) is the first High Temperature Gas-cooled Reactor (HTGR) built at the Oarai Research and Development Center of JAEA, with a thermal power of 30 MW and a maximum reactor outlet coolant temperature of 950℃ (Saito, 1994). Test researches are being conducted using the HTTR to improve HTGR technologies and to collaborate with domestic industries to contribute to foreign projects for acceleration of HTGR development worldwide. To improve HTGR technologies, advanced analysis techniques are being developed using data obtained with the HTTR, which include reactor kinetics, thermal-hydraulics, safety evaluation, and fuel performance evaluation data (including the behavior of fission products). A three-gas-circulators trip test and a vessel-cooling-system stop test were planned as a loss-of-forced-cooling test and demonstrate the inherent safety features of HTGR. The vessel-cooling-system stop test consists of stopping the vessel-cooling-system located outside the reactor pressure vessel (RPV), to remove the residual heat of the reactor core as soon as the three-gas-circulators are tripped. All three-gas-circulators is tripped at 9 MW. The primary coolant flow rate is reduced from the rated 45 t/h to 0 t/h. The control rods are not inserted into the core and the reactor power control system does not operated. A core dynamics analysis of the loss-of-forced-cooling test of the HTTR is performed. Analytical results for the reactor transient during the test are presented in this report. It is determined that the reactor power immediately decreases to the decay heat level due to the negative reactivity feedback effect of the core, even though the reactor shutdown system is not operational, and that the temperature distribution in the core changes slowly because of the high heat capacity due to the large amount of core graphite. Furthermore, the relation between the reactivities (namely, the Doppler, moderator temperature, and xenon reactivities) affecting re-critical time and reactor peak power level and total reactivity is addressed. The analytical results will be utilized for the design and construction of the Kazakhstan High Temperature Reactor (KHTR) and the realization of commercial Very High Temperature Reactor (VHTR) systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call