Abstract

A thermal-hydraulic feasibility project for an Innovative Water Reactor for Flexible fuel cycle (FLWR) has been performed since 2002. In this R&D project, large-scale thermal-hydraulic tests, several model experiments and development of advanced numerical analysis codes have been carried out. In this paper, we will describe the critical power characteristics in a 37-rod tight-lattice bundle with rod-bowing under both steady and transient states. It is observed that no matter it is run under a steady or a transient state, boiling transition (BT) always occurs axially at exit elevation of upper high-heat-flux region and transversely in the central area of the bundle. Steady critical power increases monotonically with the increase of mass velocity, with the decrease of inlet water temperature and with the decrease of exit pressure. These trends are same as those in the base case test without rod-bowing. The steady critical power with rod-bowing is about 10% lower than that without rod-bowing. For the postulated power increase and flow decrease cases that may be possibly met in a normal operation of the FLWR, it is confirmed that no BT occurs when Initial Critical Power Ratio (ICPR) is 1.3. Moreover, when the transients are run under severer ICPR that causes BT, the transient critical powers are generally same as the steady ones. The experiments are analyzed with TRAC-BF1 code. The TRAC-BF1 code shows good prediction for the occurrence or the non occurrence of the BT and predicts the BT starting time within the accuracy of critical power correlation. Traditional quasi - steady state prediction of the transient BT is confirmed being applicable for the postulated abnormal transient processes in the tight lattice bundle with rod - bowing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.