Abstract
Cross-modal clustering aims to cluster the high-similar cross-modal data into one group while separating the dissimilar data. Despite the promising cross-modal methods have developed in recent years, existing state-of-the-arts cannot effectively capture the correlations between cross-modal data when encountering with incomplete cross-modal data, which can gravely degrade the clustering performance. To well tackle the above scenario, we propose a novel incomplete cross-modal clustering method that integrates canonical correlation analysis and exclusive representation, named incomplete Cross-modal Subspace Clustering (i.e., iCmSC). To learn a consistent subspace representation among incomplete cross-modal data, we maximize the intrinsic correlations among different modalities by deep canonical correlation analysis (DCCA), while an exclusive self-expression layer is proposed after the output layers of DCCA. We exploit a l1,2 -norm regularization in the learned subspace to make the learned representation more discriminative, which makes samples between different clusters mutually exclusive and samples among the same cluster attractive to each other. Meanwhile, the decoding networks are employed to reconstruct the feature representation, and further preserve the structural information among the original cross-modal data. To the end, we demonstrate the effectiveness of the proposed iCmSC via extensive experiments, which can justify that iCmSC achieves consistently large improvement compared with the state-of-the-arts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.