Abstract
The adsorption of H2 in dehydrated and hydrated Materials of Institute Lavoisier (MIL-101) was investigated theoretically. The effect of terminal water molecules on adsorption as one of the more vital MIL-n trivalent chromium-based porous carboxylates in metal-organic frameworks application in the renewable energy field was also theoretically studied. The MIL-101 structures were optimized for geometry and energy minimization was performed. The calculations were carried out using density functional theory approach with B3LYP functional and mixed basis set of Lanl2DZ and 6-31G(d, p) for Cr and light atoms (C, H, O, F), respectively, as implemented in the Gaussian 09 program package. The spin and atomic charges distribution on the Cr metal atoms, adsorbate, and water molecules are calculated using natural bond orbital (NBO). The density of states (DOS) for the clusters was obtained using Gaussian smearing of Kohn–Sham orbital energies. The natural bond orbital (NBO) for molecular orbital analysis and atomic charge calculations were utilized. For the dehydrated MIL-101, more adsorbate molecules were found near the exposed Cr2 sites than the fluorine saturated Cr1 sites. Furthermore, terminal water molecules in the hydrated MIL-101 made more interaction sites and enhanced adsorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.