Abstract

BackgroundThe archaeal exosome is an exoribonucleolytic multiprotein complex, which degrades single-stranded RNA in 3′ to 5′ direction phosphorolytically. In a reverse reaction, it can add A-rich tails to the 3′-end of RNA. The catalytic center of the exosome is in the aRrp41 subunit of its hexameric core. Its RNA-binding subunits aRrp4 and aDnaG confer poly(A) preference to the complex. The archaeal exosome was intensely characterized in vitro, but still little is known about its interaction with natural substrates in the cell, particularly because analysis of the transcriptome-wide interaction of an exoribonuclease with RNA is challenging.ResultsTo determine binding sites of the exosome to RNA on a global scale, we performed individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) analysis with antibodies directed against aRrp4 and aRrp41 of the chrenarchaeon Sulfolobus solfataricus. A relatively high proportion (17–19%) of the obtained cDNA reads could not be mapped to the genome. Instead, they corresponded to adenine-rich RNA tails, which are post-transcriptionally synthesized by the exosome, and to circular RNAs (circRNAs). We identified novel circRNAs corresponding to 5′ parts of two homologous, transposase-related mRNAs. To detect preferred substrates of the exosome, the iCLIP reads were compared to the transcript abundance using RNA-Seq data. Among the strongly enriched exosome substrates were RNAs antisense to tRNAs, overlapping 3′-UTRs and RNAs containing poly(A) stretches. The majority of the read counts and crosslink sites mapped in mRNAs. Furthermore, unexpected crosslink sites clustering at 5′-ends of RNAs was detected.ConclusionsIn this study, RNA targets of an exoribonuclease were analyzed by iCLIP. The data documents the role of the archaeal exosome as an exoribonuclease and RNA-tailing enzyme interacting with all RNA classes, and underlines its role in mRNA turnover, which is important for adaptation of prokaryotic cells to changing environmental conditions. The clustering of crosslink sites near 5′-ends of genes suggests simultaneous binding of both RNA ends by the S. solfataricus exosome. This may serve to prevent translation of mRNAs dedicated to degradation in 3′-5′ direction.

Highlights

  • The archaeal exosome is an exoribonucleolytic multiprotein complex, which degrades single-stranded RNA in 3′ to 5′ direction phosphorolytically

  • Results individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) of S. solfataricus with antibodies directed against aRrp41 and aRrp4 An iCLIP experiment was performed with antibodies directed against aRrp41 and aRrp4 of S. solfataricus

  • To test the UV crosslinking of RNA to the exosome in S. solfataricus cells, harvested cells were resuspended and divided into two halves: one half was irradiated with UV, and the second was not

Read more

Summary

Introduction

The archaeal exosome is an exoribonucleolytic multiprotein complex, which degrades single-stranded RNA in 3′ to 5′ direction phosphorolytically. Sulfolobus solfataricus is a crenarchaeon with a growth optimum at 80 °C to 85 °C and pH 2 to 4 [1, 2] and is a widely used model organism for analysis of RNA processing and degradation in the third domain of life [3] As most archaea, it harbors a multiprotein complex for exoribonucleolytic degradation named the exosome [4, 5]. The proteins aRrp and aCsl contain S1 and KH/Zn-finger domains and build a heterotrimeric RNA-binding cap on the top of the hexamer [6] This nine-subunit complex resembles bacterial PNPase and the nine-subunit core of the eukaryotic exosome [8, 9]. Nop is part of an RNA methylating protein complex [15]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.