Abstract

In orthogonal frequency division multiplexing (OFDM) systems, time-varying multipath fading leads to the loss of subcarrier orthogonality and the occurrence of intercarrier interference (ICI). In this study, an efficient ICI suppression with less noise enhancement for multicarrier equalization is presented by using a parallel canceling scheme via frequency-domain equalization techniques, with the assumption that the channel impulse response (CIR) varies linearly during a block period. In order to avoid performance deterioration due to unreliable initial estimations in the parallel cancellation scheme, a cost function with proper weighting factor is introduced to improve the performance of the proposed equalizer. The proposed equalizer consists of a set of prefilters and a set of ICI cancellation filters, with two stages to perform different functions to achieve minimum mean square error (MMSE) equalization. The prefilters compensate for the multiplicative distortion at the first stage, and the ICI cancellation filters remove the effects of ICI by a parallel cancellation scheme at the second stage. Finally, the performance of the proposed equalizer is analyzed and compared with that of other equalizers, indicating significant performance improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.