Abstract

Standard methods of microbial cultivation only enable the isolation of a fraction of the total environmental bacteria. Numerous techniques have been developed to increase the success of isolation and cultivation in the laboratory, some of which derive from diffusion chambers. In a diffusion chamber, environmental bacteria in agar medium are put back in the environment to grow as close to their natural conditions as possible, only separated from the environment by semi-permeable membranes. In this study, the iChip, a device that possesses hundreds of mini diffusion chambers, was used to isolate tributyltin (TBT) resistant and degrading bacteria. IChip was shown to be efficient at increasing the number of cultivable bacteria compared to standard methods. TBT-resistant strains belonging to Oceanisphaera sp., Pseudomonas sp., Bacillus sp. and Shewanella sp. were identified from Liverpool Dock sediment. Among the isolates in the present study, only members of Pseudomonas sp. were able to use TBT as a sole carbon source. It is the first time that members of the genus Oceanisphaera have been shown to be TBT-resistant. Although iChip has been used in the search for molecules of biomedical interest here we demonstrate its promising application in bioremediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.