Abstract
<p>Iceland Scotland Overflow Water (ISOW), a component of the deep limb of the Atlantic Meridional Overturning Circulation (AMOC), is the equilibrated product of dense overflow into the eastern North Atlantic basin.  Modeling results and recent observations have suggested that a significant westward transport of ISOW (~1x10<sup>6</sup> m<sup>3</sup>s<sup>-1</sup>) may occur through the Bight Fracture Zone (BFZ) near 57°N, the first major channel through the Reykjanes Ridge where ISOW can cross into the Irminger Sea.  The remaining denser (and deeper) ISOW has been shown to leave the Iceland Basin westward via the Charlie-Gibbs Fracture Zone near 53°N, or southward into the West European Basin. Until now, there have been no measured time series in the BFZ to validate model results. Single moorings placed in the north and south channels of the BFZ from summer 2015 to summer 2017 were used to estimate a mean combined transport across the fracture zone of 0.8 ± 0.4 x10<sup>6</sup> m<sup>3</sup>s<sup>-1</sup> westward, with each channel contributing about half of the mean transport. Variability between the two channels on shorter (month-long) times scales can be extreme: in March of 2016, for example, north channel transport was ~0.4 x10<sup>6</sup> m<sup>3</sup>s<sup>-1</sup> eastward, while south channel transport was ~0.8 x10<sup>6</sup> m<sup>3</sup>s<sup>-1</sup> westward.  For this 2-year period, transport is stronger in the summer (0.9-1.2 x10<sup>6</sup> m<sup>3</sup>s<sup>-1</sup>) than in winter (0.5-0.7 x10<sup>6</sup> m<sup>3</sup>s<sup>-1</sup>), where large fluctuations including complete reversals suggest transport variability may be affected by winter storms.  This mooring record also shows a fresh anomaly in ISOW beginning in early 2017, which has been shown by others to originate from the surface waters near the Grand Banks region of the western north Atlantic.  Transport variability in this two-year record is examined in the context of the transport variability of the OSNAP mooring arrays on the east and west flanks of the Reykjanes Ridge just north of BFZ during the same time period.  An observationally-based understanding of how the Iceland and Irminger basins communicate with each other via the deep limb of the AMOC through the BFZ will provide fundamental insight into the pathways and processes that define the subpolar AMOC system.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.