Abstract

Between May 1983 and July 1984 glaciological parties of the 24th and 25th Japanese Antarctic Research Expeditions (JARE–24 and 25) carried out ice-core drilling using a thermal drill, down to 700.5 m depth at Mizuho Station (70°41'53"S, 44°19'54"E), as a part of the Glaciological Research Program in east Dronning Maud Land, Antarctica. The thermal drill, 3.9 m long and capable of taking a core 1.5 m long and 130 mm in diameter, is an improved version of a drill used by JARE–15 in 1975. The most important improvement was the monitoring system during drilling, for which a micro-computer was fitted in the drill. By using this system, such accidents as heater burn-out, tank overflow and failure of water suction would immediately be brought to our attention. The drilling speed was about 1.6 m/h, when the optimum output was 3.6 kW. The core recovery rate was above 99%. The core quality was good down to a depth of 80 m. Between 80 and 120 m, cracks were found at intervals of 0.15–0.5 m, and horizontal cracks were found continuously at intervals of 0.01 m or less. Immediately after the core was pulled, the stratigraphy was observed and bulk density was measured. A dust band, presumably volcanic particles, was seen at only 500.2 m depth during stratigraphic observation. The following analyses were carried out at Mizuho Station within a month of recovery: (1) Density determination by the hydrostatic method. (2) Measurement of total gas content. (3) Thin-section analyses, including observation of cracking around air bubbles and the crystalline texture, and ice-fabric studies. The 700.5 m core has been brought to Japan, and the following analyses are now under way: (1) Oxygen-isotope ratio. (2) Concentration of microparticles. (3) Electric conductivity. (4) Chemistry of soluble impurities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.