Abstract
A detailed record of late Pleistocene deglaciation followed by mid-Holocene ice shelf breakup and late Holocene re-growth is contained in continental shelf sediments in the northern Larsen area, northeast Antarctic Peninsula. The zero age of core tops is confirmed by new and published 210Pb profiles, and 70 accelerator mass spectrometer (AMS) 14C dates on bulk organic carbon define sedimentation rates of 7.6–92 cm/ka. The varied geology in the local ice drainage basins facilitates the use of ice-rafted debris (IRD) provenance in determining the presence or absence of ice shelves. All inshore cores contain an interval of non-local IRD in the post-glacial section, demonstrating widespread ice shelf breakup in the mid-Holocene. Both breakup and re-growth may have taken centuries and there are no widespread debris layers associated with breakup. Cores beyond and up to 30 km inside the historical ice shelf limit exhibit a varied IRD provenance throughout the Holocene, suggesting the maximum ice shelf limit may date only from the Little Ice Age. Benthic foraminiferal assemblages are related to water masses and position on the continental shelf and have been modified by taphonomic processes. Nevertheless we discern a deglaciation signal in Prince Gustav Channel of a calcareous spike in predominantly agglutinated assemblages, and this is repeated at the time of mid-Holocene ice shelf breakup. The inferred mid-Holocene warm period occurred later in the northern Larsen area than on the west coast of the Antarctic Peninsula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.