Abstract

We present new evidence for a grounded ice sheet and subsequent erosion by large fields of coherent icebergs for the central and northern Yermak Plateau (80.6°N to 82.2°N). Sediment echosounder and swath bathymetry data were combined with seismic reflection profiles and reveal at least three different glacial events marked by erosional unconformities: (i) An erosional unconformity was observed at ∼70–90 m below seafloor down to depths of more than 850 m present water depth, extending to ∼82°N. The erosional unconformity is overlain by an acoustically chaotic layer of ∼50 m thickness interpreted as a diamicton originating from a grounded ice sheet. The erosional unconformity and the overlying diamicton can be correlated to the overconsolidated sediments found at ODP Site 910 at a sediment depth between ∼19 and 70–95 m. The oldest sediments just above the overconsolidated sediments are of late Early Pleistocene age (MIS19/20) and provide a minimum age for the grounding event. (ii) Parallel to sub-parallel mega-scale lineations are observed on large parts of the plateau west and northeast of the Sverdrup Bank at water depths between 725 and 850 m. These lineations are mainly oriented NNE-SSW and were quite likely formed by the keels of deep-draft, mega-scale tabular icebergs entrapped in a coherent mass of icebergs and sea ice. The lineations are of late Middle Pleistocene age. (iii) Smaller-scale curvilinear plow marks were found in the southernmost part of our study area at water depths between 640 and 775 m. These were possibly caused by single icebergs and are of Late Pleistocene age. Iceberg scours are also found on three basement heights on the Yermak Plateau. These, however, cannot be assigned to specific events; they might as well originate from additional glacial phases. The western (at >850 m water depth) and eastern (at >1000–1200 m water depth) flanks of the Yermak Plateau are relatively featureless, and indicate the maximum depth of a grounded ice sheet and of iceberg armadas probably entrapped in sea ice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call