Abstract

Understanding the function of nanoscale structure morphology in ice adhesion properties is important in deicing applications. The correlation between ice adhesion and nanowire morphology as well as the corresponding ice shear fracture mechanism are presented for the first time. Ice adhesion on nanowires was measured using a tangential ice-detaching instrument that was developed in-house. Stress analysis was performed using a COMSOL software. Nanowire surface shifted from Wenzel to Cassie transition and Cassie wetting states when the nanowire length was increased. Tangential ice-detaching forces were greater on the hydrophilic surface than those on the hydrophobic surface. Ice-ice internal shear fracture occurred on the ice and force probe contact area at the Wenzel state or on the ice and nanowire contact area at Cassie transition and Cassie state. Different lengths of nanowires caused different wetting states; thus, different fracture areas were formed, which resulted in different tangential ice-detaching forces. This paper presents a new way of tailoring surface ice adhesion via rational design of nanowire morphology with different wetting states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.