Abstract

Understanding the effects of ice recrystallization inhibitors at varying temperatures is critical for evaluating their applications. We studied the ice recrystallization inhibition (IRI) effects of cellulose nanocrystals (CNCs) at constant and cycling temperatures. A splat assay using a 3.0 % sucrose solution showed that the IRI effect of 0.2 % CNCs decreased with increasing temperatures from −10 °C to −2 °C; the IRI effects of 0.5 % and 1.0 % CNCs remained unchanged for an increase in temperature from −10 °C to −4 °C but decreased at the temperature of −2 °C. A sandwich assay using a 25.0 % sucrose solution revealed that IRI effects increased with increasing temperatures, except in the presence of 0.2 % and 0.5 % CNCs at −5 °C and − 4 °C. A sandwich assay using a 35.0 % sucrose solution revealed that better IRI effects were observed at higher temperatures at all CNCs concentrations. At cycling temperatures, CNCs were inactive for storage times for ≤2 h, regardless of the rate, holding time, and amplitude of temperature fluctuation, but were active for storage times of 2 and 10 days. The IRI effects of CNCs at different temperatures may be related to the coverage of CNCs on ice surface, diffusion rate of CNCs to ice surface, and types of ice recrystallization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call