Abstract

Ice nucleation encountered in engineering systems is often induced by solid/water interfaces. When classical nucleation theory is used to analyze ice nucleation in such systems, the uniformity of interfaces that contribute to ice nucleation must be carefully considered, because classical nucleation theory cannot be directly applied to non-uniform interfaces. In this study, to discuss the uniformity of ice nucleating activity of solid/water interfaces, ice nucleation in water droplets prepared on glass surfaces was investigated for various droplet sizes from micrometer to sub-millimeter. When the interfacial area between water and the glass surface was smaller than 1 × 10−10 m2, the ice nucleation temperature showed scatter of about 2 °C, suggesting uniformity of the interface. However, when the interfacial area was larger than 1 × 10−8 m2, the ice nucleation temperature showed large scatter, suggesting the ice nucleating activity was no longer uniform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.