Abstract

Atmospheric aerosol and the cloud droplets and ice crystals that grow on them remain major sources of uncertainty in global climate models. A subset of aerosol, ice nucleating particles, catalyze the freezing of water droplets at temperatures warmer than −38 °C. Here we show that RuBisCO, one of the most abundant proteins in plants and phytoplankton, is one of the most efficient known immersion ice nucleating particles with a mean freezing temperature of −7.9 ± 0.3 °C. Further, we demonstrate RuBisCO is present in ambient continental aerosol where it can serve as an ice nucleating particle. Other biogenic molecules act as immersion ice nucleating particles, in the range of −19 to −26 °C. In addition, our results indicate heat denaturation is not a universal indicator of the proteinaceous origin of ice nucleating particles, suggesting current studies may fail to accurately quantify biological ice nucleating particle concentrations and their global importance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call