Abstract

Heterogeneous ice nucleation at the water–sapphire interface is studied using sum-frequency generation spectroscopy. We follow the response of the O–H stretch mode of interfacial water during ice nucleation as a function of time and temperature. The ice and liquid states each exhibit very distinct, largely temperature-independent responses. However, at the moment of freezing, a transient response with a significantly different intensity is observed, with a lifetime between several seconds and several minutes. The presence of this transient signal has previously been attributed to a transient phase of ice. Here, we demonstrate that the transient signal can be explained without invoking a transient ice phase, as the transient signal can simply be accounted for by a linear combination of time-dependent liquid and ice responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.