Abstract

Abstract With the increase in popularity of podded propulsors and arctic navigation, understanding the interaction between a podded propulsor and ice has become more important. Propeller-ice interaction itself is a complicated process with a high level of uncertainty resulting from the uncertainties associated with the properties of the ice and with the propeller-ice interaction conditions. Model tests provide relatively well-controlled ice properties and interaction conditions to reduce the uncertainties. In order to improve the understanding of this interaction and to develop numerical models of it, a model podded propulsor was used in “Puller” mode, and ice loads were measured on its instrumented blade and propeller shaft. The results of the experiments conducted to simulate the interactions (milling) of the instrumented blade with ice in different operating conditions are reported in this paper. Loads measured during the milling consist of ice milling loads, “inseparable” hydrodynamic loads, and “separable” hydrodynamic loads. The sample results presented here include ice milling and inseparable hydrodynamic loads for various advance coefficients and depths of cut (amount of blade penetration into ice). Some results are compared with existing ice load models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.