Abstract

A major experiment simulating ground freezing around a buried chilled pipeline in a controlled-environment facility provided an opportunity to examine the form and orientation of ice lenses associated with a vertical interface between silt and sand. The heave of the silt decreased towards the interface and ice lenses in the silt were found to dip at an increasing angle in the same direction. Consideration of the thermal regime suggests that the direction of heat flow influences the orientation of the lenses. The interface was irregular and ice lenses at the lower part of the interface were closely aligned to it, indicating that changes in soil texture also influence ice lens orientation. Deformation of ice lenses appears to have occurred in the silt near to the interface. The arrangement of the lenses can be explained by the different thermal properties and thermodynamic behaviour of the two materials and by the mechanical "anchorage" of the sand in which there is no ice lens formation. Cycles of freezing and thawing modify soil structure and produce cumulative residual deformations which are modified by a soil interface. Key words : frost heave, ice lenses, frozen soil, vertical silt–sand interface, chilled pipeline, differential heave.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call