Abstract

AbstractTwo types of models, coupled and uncoupled, are currently used to determine the extent to which it is necessary to bury subsea pipelines deeper than the maximum expected depth of ice gouges. In the uncoupled model, the soil is modeled by nonlinear Winkler springs attached to the pipe at one end, with the subgouge displacement imposed at the other end of the springs. In coupled models, the soil is modeled as a three-dimensional (3D) continuum, simultaneously capturing the processes of gouging (with associated very large deformations) and the pipeline resisting the soil displacements. This paper pinpoints the main reason for differences in predictions between the coupled and uncoupled model. It is not the coupling errors (attributable to directional coupling between Winkler springs in the axial, lateral, and vertical directions, and slice-to-slice coupling), but, rather, the superposition error, which arises in the uncoupled model by adding the soil displacements attributable to the load the pipe ex...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.