Abstract

AbstractIce dolines on the Larsen Ice Shelf, Antarctica, are observed to be elongated depressions a few hundred meters across and up to 19 m deep. One-meter resolution imagery is used to quantify these dimensions. Elevation profiles across five dolines are derived by photoclinometry. Landsat and radar imagery is also used to show that dolines can form in a single melt season and persist for years. Dolines occur in clusters and in direct proximity to surface meltwater lakes. Field observations suggest dolines form by collapse into a subsurface cavity. A direct hydraulic connection with the underlying ocean is believed necessary to drain water that would otherwise collect in dolines. A formation hypothesis is discussed consistent with these observations and with energy-and hydrostatic-imbalance considerations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.