Abstract
This paper presents the challenge of ice protection within a concept study for variable pitot inlets of aero engines in transonic and supersonic civil aviation. An overview of variable inlet concept groups that adjust the inlet geometry by rigid segment repositioning, elastic surface deformation, or boundary layer control is given. Ice detection mechanisms and various pneumatic, fluid, as well as electric ice protection systems are presented. These ice protection systems are assigned to the respective inlet concept groups and evaluated regarding economic, functional, and safety requirements by means of pairwise comparison and weighted point rating to determine the most suitable combinations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.