Abstract

S1094b is the largest (155 m-size) and southernmost known ice-exposing fresh crater discovered so far on Mars, revealing a relatively pure and unstable subsurface ice deposit located at the northern Martian mid-latitudes. In this work, we analyze HiRISE images taken on 27 February 2022 and on 5 December 2022 to perform a multi-temporal analysis of its ice-rich ejecta, combining this analysis with geologic mapping, the boulder size frequency distribution (SFD) and thermal modeling. The objective is to provide a multidisciplinary characterization of both the impact and subsequent exposed ice sublimation processes. The boulder SFD of both February and December cases show a power-law best fit with indices −4.68 ± 0.15 and − 3.47 ± 0.10, respectively. In the same timeframe, the density of boulders per km2 ≥ 1.5 m changes from 3908, to 596. This flattening is mainly due to the sublimation and consequent loss of the smaller-size icy boulders. This is confirmed by the ice volume computation performed on the area, which changed from ∼20,274 ± 3997 m3 to ∼7951 ± 1117 m3, i.e. a decrease of ∼60% in 274 Sols. The thermal models showed that the ice in this region is always unstable, leading to a total of 6504.71 sublimation hours from which we estimated a sublimation rate of ∼0.15 ± 0.04 mm/h (i.e. ∼3.60 ± 0.96 mm/Sol). The presence of this amount of accessible ice at such low latitudes could be a valuable resource for potential future human missions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.