Abstract

AbstractA one‐dimensional thermodynamic model for simulating lake‐ice phenology is presented and evaluated. The model can be driven with observed daily or hourly atmospheric forcing of air temperature, relative humidity, wind speed, cloud amount and snowfall. In addition to computing the energy balance components, key model output includes the temperature profile at an arbitrary number of levels within the ice/snow (or the water temperature if there is no ice) and ice thickness (clear ice and snow‐ice) on a daily basis, as well as freeze‐up and break‐up dates. The lake‐ice model is used to simulate ice‐growth processes on shallow lakes in arctic, sub‐arctic, and high‐boreal forest environments. Model output is compared with field and remote sensing observations gathered over several ice seasons. Simulated ice thickness, including snow‐ice formation, compares favourably with field measurements. Ice‐on and ice‐off dates are also well simulated when compared with field and satellite observations, with a mean absolute difference of 2 days. Model simulations and observations illustrate the key role that snow cover plays on the seasonal evolution of ice thickness and the timing of spring break‐up. It is also shown that lake morphometry, depth in particular, is a determinant of ice‐off dates for shallow lakes at high latitudes. Copyright © 2003 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.