Abstract
In the past two decades, mass loss from the Greenland ice sheet has accelerated, partly due to the speedup of glaciers. However, uncertainty in speed derived from satellite products hampers the detection of inland changes. In-situ measurements using stake surveys or GPS have lower uncertainties. To detect inland changes, we repeated in-situ measurements of ice-sheet surface velocities at 11 historical locations first measured in 1959, located upstream of Jakobshavn Isbræ, west Greenland. Here, we show ice velocities have increased by 5–15% across all deep inland sites. Several sites show a northward deflection of 3–4.5° in their flow azimuth. The recent appearance of a network of large transverse surface crevasses, bisecting historical overland traverse routes, may indicate a fundamental shift in local ice dynamics. We suggest that creep instability—a coincident warming and softening of near-bed ice layers—may explain recent acceleration and rotation, in the absence of an appreciable change in local driving stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.