Abstract

This paper presents a dissipative particle dynamics (DPDs) method for investigating the movement and deformation of biconcave shape red blood cells (RBCs) with the worm-like chain (WLC) bead spring. First, the stretching of a RBC is modeled and the obtained shape evolution of the cell agrees well with experimental results. Second, the movement and deformation of a RBC in shear flows are investigated and three typical modes (tumbling, intermittent and tank-treading) are observed. Lastly, an illustrating example of multi-RBCs in Poiseuille flow in a tube is simulated. We conclude that the presented DPD method with WLC spring can effectively model the movement and deformation of bioconcave cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.