Abstract

BackgroundWe assessed whether ICT can alleviate 6-OHDA-induced cell damage via inhibition of oxidative stress by evaluating the protective effect of icaritin (ICT) against 6-hydroxydopamine (6-OHDA)-induced MN9D cell damage and further determined the mechanism by which ICT reduces oxidative stress.MethodsMN9D cells were treated with 6-OHDA, to study the mechanism underlying the neuroprotective effect of ICT. MN9D cell damage was assessed by the CCK-8 assay, flow cytometry was performed to measure the content of reactive oxygen species (ROS) in cells, a superoxide dismutase (SOD) kit was used to evaluate SOD activity, and Western blotting was used to measure the expression of α-synuclein (α-Syn), Tyrosine hydroxylase (TH), nuclear factor erythroid-2 related factor 2 (Nrf2), and heme oxygenase-1 (HO-1).ResultsICT reduced damage to MN9D cells induced by 6-OHDA. ICT increased SOD activity and TH expression and reduced ROS production and α-Syn expression. ICT promoted the translocation of Nrf2 from the cytoplasm to the nucleus and further increased the protein expression of HO-1.ConclusionsICT protects against 6-OHDA-induced dopaminergic neuronal cell injury by attenuating oxidative stress, and the mechanism is related to modulate the activities of Nrf2, HO-1 protein, and SOD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.