Abstract

BackgroundImmune checkpoint blockade agents, such as anti-PD-1 antibodies, show promising antitumor efficacy but only a limited response in patients with non-small cell lung cancer (NSCLC). Icariside II (IS), a metabolite of Herba Epimedii, is a COX-2 and EGFR inhibitor that can enhance the anti-PD-1 effect. This study aimed to evaluate the antitumor effect of IS in combination with anti-PD-1 and explore the underlying mechanism. MethodsTumor growth was assessed in Lewis Lung Cancer (LLC) tumor-bearing mice in seven groups (control, IS 20 mg/kg, IS 40 mg/kg, anti-PD-1, IS 20 mg/kg+anti-PD-1, IS 40 mg/kg+anti-PD-1, ERK inhibitor+anti-PD-1). Tumor-infiltrating immune cells were measured by flow cytometry. The mechanisms were explored by tumor RNA-seq and validated in LLC cells through molecular biological experiments using qRTā€’PCR, ELISA, and western blotting. ResultsAnimal experiments showed that IS in combination with anti-PD-1 further inhibited tumor growth and remarkably reduced the infiltration of myeloid-derived suppressor cells (MDSCs) into the tumor compared with anti-PD-1 monotherapy. RNA-seq and in vitro experiments showed that IS suppressed the chemotactic migration of MDSCs by downregulating the expression of CXC chemokine ligands 2 (CXCL2) and CXCL3. Moreover, IS promoted reactive oxygen species (ROS) generation and inhibited the activation of SRC/ERK/STAT3 in LLC cells, which are upstream signaling pathways of these chemokines. ConclusionIS potentiates the anti-PD-1 anti-tumor effect by reducing chemotactic infiltration of the myeloid-derived suppressor cell into the tumor microenvironment, via ROS-mediated inactivation of SRC/ERK/STAT3 signaling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call