Abstract
In this era of information overload, to better provide personalized content services to users, recommendation systems have greatly improved the efficiency of information distribution. Graph Convolution Network(GCN), which is one of the representative works of graph structure aggregation processing, works by node convolution with the help of the Laplacian matrix of the graph and weighted combination of neighbor node information according to the outgoing and incoming degrees of neighbor nodes to obtain the representation of the current node. However, the mainstream GCN models nowadays do not take into account data augmentation of metadata and the fact that each node plays different roles with different importance and weights, thus making the recommendation performance limited. To better solve the above problems, we propose the IcaGCN model, which can perform data augmentation and calculate node weights in modules, and is a convenient plug-and-play method. Finally, extensive experimental results on four real-world datasets have shown the effectiveness and robustness of the proposed model. Especially on the Amazon-Book dataset, our IcaGCN has improved by 6.32%, 42.29%, and 12.38% in Recall@20, MRR@20, and NDCG@20, respectively, compared to other existing state-of-the-art models. We also provide source code and data to reproduce the experimental results <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><i>a</i></sup> .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.