Abstract

본 논문에서는 효과적인 정보를 표현하는 Independent Component Analysis(ICA)-factorial 표현방법을 이용하여 얼굴감정 인식을 수행한다. 얼굴감정인식은 두 단계인 특징추출 과정과 인식과정에 의해 이루어진다. 먼저 특징추출방법은 주성분 분석(Principal Component Analysis)을 이용하여 얼굴영상의 고차원 공간을 저차원 특징공간으로 변환한 후 ICA-factorial 표현방법을 통해 좀 더 효과적으로 특징벡터를 추출한다. 인식단계는 최소거리 분류방법인 유클리디안 거리에 근거한 K-Nearest Neighbor 알고리즘으로 얼굴감정을 인식한다. 6개의 기본감정(기쁨, 슬픔, 화남, 놀람, 공포, 혐오)에 대해 얼굴 감정 데이터베이스를 구축하고 실험해본 결과 기존의 방법보다 좋은 인식 성능을 얻었다. In this paper, we proposes a method for recognizing the facial expressions using ICA(Independent Component Analysis)-factorial representation method. Facial expression recognition consists of two stages. First, a method of Feature extraction transforms the high dimensional face space into a low dimensional feature space using PCA(Principal Component Analysis). And then, the feature vectors are extracted by using ICA-factorial representation method. The second recognition stage is performed by using the Euclidean distance measure based KNN(K-Nearest Neighbor) algorithm. We constructed the facial expression database for six basic expressions(happiness, sadness, angry, surprise, fear, dislike) and obtained a better performance than previous works.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.