Abstract

The spiking neural network (SNN) has attracted the attention of many researchers because of its low energy consumption and strong bionics. However, when the network conversion method is used to solve the difficulty of network training caused by its discrete, too-long inference time, it may hinder the practical application of SNN. This paper proposes a novel model named the SNN with Initialized Membrane Potential and Coding Compensation (IC-SNN) to solve this problem. The model focuses on the effect of residual membrane potential and rate encoding on the target SNN. After analyzing the conversion error and the information loss caused by the encoding method under the low time step, we propose a new initial membrane potential setting method and coding compensation scheme. The model can enable the network to still achieve high accuracy under a low number of time steps by eliminating residual membrane potential and encoding errors in the SNN. Finally, experimental results based on public datasets CIFAR10 and CIFAR100 also demonstrate that the model can still achieve competitive classification accuracy in 32 time steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.