Abstract

Industrial fault diagnosis (FD) is crucial to detect the causes of faults in a timely manner and solve the problems to maintain stable production. Adequately considering the spatial structure of the samples and their features is an urgent problem for better FD. This paper focused on the points located in the within-class boundaries and between-class intersection region (IC points) and proposed IC point weight learning-based graph convolution network (GCN) and improving feature distribution (ICWGCN-FD) method. Firstly, ICWGCN-FD assigns appropriate weights to IC points specially allocated by graph learning layer. Secondly, a cosine distance loss term is particularly designed to make the IC points closer to the center of their respective classes and further away from their nearest neighbor points belongs to other classes. Finally, the spatial feature distribution of the overall samples is improved under the influence of the message passing function possessed by GCN, thus presenting a clearer distribution. Two cases from industrial simulation are carried out to validate the practical feasibility and superiority of ICWGCN-FD, compared with other classic and recent graph neural networks. In addition, the 3D visualization results correspond to the principles of the method, and an ablation experiment successfully verified the validity of each component.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.