Abstract

AimsPseudomonas aeruginosa is one of the leading causes of opportunistic and hospital-acquired infections worldwide, which is frequently linked with clinical treatment difficulties. Ibuprofen, a widely used non-steroidal anti-inflammatory drug, has been previously reported to exert antimicrobial activity with the specific mechanism. We hypothesized that inhibition of P. aeruginosa with ibuprofen is involved in the quorum sensing (QS) systems. Main methodsCFU was utilized to assessed the growth condition of P. aeruginosa. Crystal violent staining and acridine orange staining was used to evaluate the biofilm formation and adherence activity. The detection of QS virulence factors such as pyocyanin, elastase, protease, and rhamnolipids were applied to investigation the anti-QS activity of ibuprofen against P. aeruginosa. The production of 3-oxo-C12-HSL and C4-HSL was confirmed by liquid chromatography/mass spectrometry analysis. qRT-PCR was used to identify the QS-related gene expression. Furthermore, we explored the binding effects between ibuprofen and QS-associated proteins with molecular docking. Key findingsIbuprofen inhibits P. aeruginosa biofilm formation and adherence activity. And the inhibitory effects of ibuprofen on C4-HSL levels were concentration-dependent (p < 0.05), while it has no effect on 3-oxo-C12-HSL. Moreover, ibuprofen attenuates the production of virulence factors in P. aeruginosa (p < 0.05). In addition, the genes of QS system were decreased after the ibuprofen treatment (p < 0.05). Of note, ibuprofen was binding with LuxR, LasR, LasI, and RhlR at high binding scores. SignificanceThe antibiofilm and anti-QS activity of ibuprofen suggest that it can be a candidate drug for the treatment of clinical infections with P. aeruginosa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call