Abstract

Phosphodiesterase-4 (PDE-4) is a cyclic adenosine monophosphate-specific enzyme involved in various inflammatory diseases. We studied its role in and the effect of ibudilast, which predominantly blocks PDE-4, on rat cerebral aneurysms. Cerebral aneurysms were induced at the anterior cerebral artery-olfactory artery bifurcation of female rats subjected to hypertension, increased hemodynamic stress, and estrogen deficiency. The effect of ibudilast (30 or 60 mg/kg/d for 3 months) on their cerebral aneurysms was studied by morphological and immunohistochemical assessment and quantitative real-time polymerase chain reaction assay. In our in vitro study, we grew endothelial cells stimulated by angiotensin II under estrogen-free conditions and examined the effect of ibudilast on PDE-4 activation and the cyclic adenosine monophosphate level. Morphological evaluation using vascular corrosion casts showed ibudilast significantly suppressed cerebral aneurysms in a dose-dependent manner. In rats with induced cerebral aneurysms, the gene and protein expression of PDE-4 was high, and endothelial leukocyte adhesion molecules (P-selectin, intracellular adhesion molecule 1, and vascular adhesion molecule 1), matrix metalloproteinase-9, and tumor necrosis alpha were expressed. Macrophage migration was also increased. Treatment with ibudilast down-regulated these molecules, suppressed macrophage migration into the aneurysm wall, and inhibited PDE-4 activation and the elevation of cyclic adenosine monophosphate in endothelial cells. These results suggest that blocking of PDE4 is associated with the reduction of inflammation-related molecules and macrophage migration, thereby reducing the progression of cerebral aneurysms. It may represent a new conservative therapy to treat patients with cerebral aneurysms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call