Abstract

Much research on software engineering relies on experimental studies based on fault injection. Fault injection, however, is not often relevant to emulate real-world software faults since it “blindly” injects large numbers of faults. It remains indeed challenging to inject few but realistic faults that target a particular functionality in a program. In this work, we introduce iBiR , a fault injection tool that addresses this challenge by exploring change patterns associated to user-reported faults. To inject realistic faults, we create mutants by re-targeting a bug-report-driven automated program repair system, i.e., reversing its code transformation templates. iBiR is further appealing in practice since it requires deep knowledge of neither code nor tests, just of the program’s relevant bug reports. Thus, our approach focuses the fault injection on the feature targeted by the bug report. We assess iBiR by considering the Defects4J dataset. Experimental results show that our approach outperforms the fault injection performed by traditional mutation testing in terms of semantic similarity with the original bug, when applied at either system or class levels of granularity, and provides better, statistically significant estimations of test effectiveness (fault detection). Additionally, when injecting 100 faults, iBiR injects faults that couple with the real ones in around 36% of the cases, while mutation testing achieves less than 4%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call