Abstract

Risk assessments for vinyl chloride (VC) and trichloroethylene (TCE) are presented as examples of approaches for incorporating chemical-specific pharmacokinetic and mechanistic information into a more scientifically plausible cancer risk assessment. For VC, the evidence regarding mode of action includes direct reaction of a metabolite with DNA, resulting in DNA adducts and mistranscription, and cross-species target-tissue correspondence of a rare tumor type. Risk estimates for human exposure to VC predicted with a physiologically-based pharmacokinetic (PBPK) model and the linearized multistage (LMS) model were lower than those currently used in environmental decision-making by a factor of 30 to 50, and were more consistent with human epidemiological data. For TCE, there is evidence of increased cell proliferation due to receptor interaction or cytotoxicity in every instance in which tumors are observed, and the tumors typically represent an increase in the incidence of a commonly observed, species-specific lesion. Virtually safe exposure estimates for human exposure to TCE predicted with a PBPK model and a margin of exposure (MOE) approach were higher than those obtained by the conventional LMS approach by roughly a factor of 100. The MOE approach is recommended as an alternative to the LMS approach for chemicals with a carcinogenic mode of action which entails increased cell proliferation, leading to the expectation of a highly nonlinear cancer dose-response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.