Abstract

Deep learning-based 3D target detection methods need to solve the problem of insufficient 3D target detection accuracy. In this paper, the KM3D network is selected as the benchmark network after the experimental comparison of current mainstream algorithms, and the IAE-KM3D network algorithm based on the KM3D network is proposed. First, the Resnet V2 network is introduced, and the residual module is redesigned to improve the training capability of the new residual module with higher generalization. IBN NET is then introduced to carefully integrate instance normalization and batch normalization as building blocks to improve the model’s detection accuracy in hue- and brightness-changing scenarios without increasing time loss. Then, a parameter-free attention mechanism, Simam, is introduced to improve the detection accuracy of the model. After that, the elliptical Gaussian kernel is introduced to improve the algorithm’s ability to detect 3D targets. Finally, a new key point loss function is proposed to improve the algorithm’s ability to train. Experiments using the KITTI dataset conclude that the IAE-KM3D network model significantly improves detection accuracy and outperforms the KM3D algorithm regarding detection performance compared to the original KM3D network. The improvements for AP2D, AP3D, and APBEV are 5%, 12.5%, and 8.3%, respectively, and only a tiny amount of time loss and network parameters are added. Compared with other mainstream target detection algorithms, Monn3D, 3DOP, GS3D, and FQNet, the improved IAE-KM3D network in this paper significantly improves AP3D and APBEV, with fewer network parameters and shorter time consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.