Abstract

ABSTRACT Cancer is one of the main diseases threatening human life, accounting for millions of deaths around the world each year. Traditional physical and chemical methods for cancer treatment are extremely time-consuming, lab-intensive, expensive, inefficient and difficult to be applied in a high-throughput way. Hence, it is an urgent task to develop automated computational methods to enable fast and accurate identification of anticancer peptides (ACPs). In this paper, we develop a novel model named iACP-GE to identify ACPs. Multi-features are extracted by using binary encoding, enhanced grouped amino acid composition and BLOSUM62 encoding based on the N5C5 sequence, as well as detrended forward moving-average auto-cross correlation analysis based on physicochemical properties of 20 natural amino acids. Thus, 835 features are obtained for each sample, in order to avoid information redundancy, gradient boosting decision tree was adopted as the feature selection strategy. Then, the optimal feature subset is input to the extra tree classifier. The accuracies of ACP740 and ACP240 datasets with the 5-fold cross-validation were 90.54% and 91.25%, respectively. Experimental results indicate that iACP-GE significantly outperforms several existing models on ACP740 and ACP240 datasets and can be used as an effective tool for the identification of ACPs. The datasets and source codes for iACP-GE are available at https://github.com/yunyunliang88/iACP-GE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.