Abstract
Massive amounts of geo-tagged and textually annotated images are provided by online photo services such as Flickr and Zommr. However, most existing image retrieval engines only consider text annotations. We present I2RS, a system that allows users to view geo-textual images on Google Maps, find hot topics within a specific geographic region and time period, retrieve images similar to a query image, and receive recommended images that they might be interested in. I2RS is a distributed geo-textual <u>i</u>mage <u>r</u>etrieval and <u>r</u>ecommendation <u>s</u>ystem that employs SPB-trees to index geo-textual images, and that utilizes metric similarity queries, including top- m spatio-temporal range and k nearest neighbor queries, to support geo-textual image retrieval and recommendation. The system adopts the browser-server model, whereas the server is deployed in a distributed environment that enables efficiency and scalability to huge amounts of data and requests. A rich set of 100 million geo-textual images crawled from Flickr is used to demonstrate that, I2RS can return high-quality answers in an interactive way and support efficient updates for high image arrival rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.