Abstract

A commercial bipolar junction transistor (2N 2219A, npn) irradiated with 84 MeV O6+-ions with fluence of the order of 1013 ions cm−2 is studied for radiation-induced gain degradation and deep-level defects or recombination centers. I-V measurements are made to study the gain degradation as a function of ion fluence. Properties such as activation energy, trap concentration and capture cross section of deep levels are studied by deep-level transient spectroscopy. Minority carrier trap energy levels with energies ranging from E C −0.17 eV to E C −0.55 eV are observed in the base–collector junction of the transistor. Majority carrier defect levels are also observed with energies ranging from E V +0.26 eV to E V +0.44 eV. The irradiated device is subjected to isothermal and isochronal annealing. The defects are seen to anneal above 250 °C. The defects generated in the base region of the transistor by displacement damage appear to be responsible for an increase in base current through Shockley-Read-Hall or multi-phonon recombination and consequent transistor gain degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.