Abstract

BackgroundVariations in hormone concentrations across the menstrual cycle affect human female mate preferences. It has been shown that around the time of ovulation human females prefer more masculine male voices, faces, and bodies while simultaneously preferring less faces that are more feminine. They prefer also displays of male dominance, males with more symmetrical faces, and the scent of males with high levels of body symmetry. The aim of the experiments reported here was to investigate whether there are changes in female preferences for walking gaits across the menstrual cycle.ResultsExperiment 1 showed female observers could discriminate between point-light walkers with low and high levels of fluctuating asymmetries in their gaits. Female observers were more sensitive to asymmetries in female gaits than they were for asymmetries in male gaits. Experiment 2 showed that level of gait asymmetry did not affect the abilities of observers to discriminate female from male walkers. Experiment 3 showed that female observers did not change their preference for low and high asymmetry walkers across their menstrual cycles. However, females showed a decreased preference for all female walkers at the time during which it was estimated observers were at peak fertility. That same change in preference was not observed for male walkers.ConclusionsThese data suggest female observers may not value gait asymmetry, as a mate selection cue, in the same way that they value asymmetries in faces and bodies. While only “average” gaits were used in these experiments, rather than the gaits of individual walkers, the types of asymmetries in gait tested here were not used in the same way as static cues for judging the apparent healthiness of individuals. Females do discriminate well average female gait asymmetries and do change their preferences for those gaits across their menstrual cycle. Doing so may reflect the operation of processes that equip females with an advantage when competing for mates at times of peak fertility.

Highlights

  • Variations in hormone concentrations across the menstrual cycle affect human female mate preferences

  • Two preliminary experiments were run to confirm first that human female observers could detect differences in gait asymmetries in such displays and, second, that those differences did not affect their ability to discriminate the sex of individual walkers

  • Experiment 1 The aim of Experiment 1 was to test whether female observers could detect asymmetries in the gaits of pointlight walkers used here

Read more

Summary

Introduction

Variations in hormone concentrations across the menstrual cycle affect human female mate preferences. It has been shown that around the time of ovulation human females prefer more masculine male voices, faces, and bodies while simultaneously preferring less faces that are more feminine They prefer displays of male dominance, males with more symmetrical faces, and the scent of males with high levels of body symmetry. It has been shown that during the stage of the menstrual cycle during which women are most likely to become pregnant from a single act of sexual intercourse (the high conception risk, HCR, phase) that they prefer more masculine male voices [1], faces [2,3,4,5,6], and bodies [7,8]. Human individuals with low FA are reported to have better emotional and psychological health [19], have lower rates of mortality and morbidity [13], and increased fertility [20]

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.